techhub.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A hub primarily for passionate technologists, but everyone is welcome

Administered by:

Server stats:

4.6K
active users

#tilingtuesday

6 posts5 participants0 posts today
Rasmus<p>Monohedral triangle tiling of the gyroid, which is the dual tessellation of a partial Cayley surface complex of the group: </p><p>```<br>G = ⟨ f₁,t₁ | f₁², t₁⁶, (f₁t₁)⁴, (f₁t₁f₁t₁⁻¹f₁t₁²)² ⟩<br>```</p><p>Ball of radius 21. (1/2)</p><p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a></p>
Rasmus<p>Module that can be used to create the structure. (2/2)</p><p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a></p>
Bojidar Marinov<p><a href="https://editor.p5js.org/bojidar-bg/full/vZRBxs5PO" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">editor.p5js.org/bojidar-bg/ful</span><span class="invisible">l/vZRBxs5PO</span></a></p><p><a href="https://mastodon.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mastodon.social/tags/p5js" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>p5js</span></a> <a href="https://mastodon.social/tags/hexagons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hexagons</span></a></p>
Laurent Malys<p>⋈ Bow ties hexagonal weaving</p><p>made with <a href="https://framapiaf.org/tags/p5js" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>p5js</span></a> </p><p><a href="https://framapiaf.org/tags/creativecoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>creativecoding</span></a> <a href="https://framapiaf.org/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://framapiaf.org/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://framapiaf.org/tags/tessellation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tessellation</span></a> <a href="https://framapiaf.org/tags/art" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>art</span></a></p>
foldworks<p>Base of a Celtic cross (c. 1890), Glasnevin Cemetery (Irish: Reilig Ghlas Naíon), Dublin, Ireland</p><p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a> <a href="https://mathstodon.xyz/tags/celtic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>celtic</span></a> <a href="https://mathstodon.xyz/tags/CelticCross" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CelticCross</span></a> <a href="https://mathstodon.xyz/tags/triskelion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triskelion</span></a> <a href="https://mathstodon.xyz/tags/spiral" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spiral</span></a></p>
TimemiT<p>Ultrafractal ducks and stats</p><p><a href="https://mastodon.scot/tags/tilingtuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tilingtuesday</span></a></p>
꧁ᐊ𰻞ᵕ̣̣̣̣̣̣́́♛ᵕ̣̣̣̣̣̣́́𰻞ᐅ꧂<p>4d shapes<br>9d colors<br>😳</p><p><a href="https://mastodon.gamedev.place/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mastodon.gamedev.place/tags/4d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>4d</span></a> <a href="https://mastodon.gamedev.place/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mastodon.gamedev.place/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mastodon.gamedev.place/tags/abstract" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>abstract</span></a> <a href="https://mastodon.gamedev.place/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mastodon.gamedev.place/tags/mastoart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mastoart</span></a></p>
Rasmus<p>The hexagonal tile is of course slightly skewed. (2/3) <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a></p>
Rasmus<p>The tiling can be divided down into different modules of higher genus. One can be seen below. (2/3) <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a></p>
Rasmus<p>Monohedral Hexagonal Tiling of infinite stacked surface with triangular, hexagonal and rhombic channels. (1/3) <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a></p>
Bojidar Marinov<p>I heard people like animated checkerboards, so I made one 😇 </p><p><a href="https://editor.p5js.org/bojidar-bg/full/j3T6PwfH1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">editor.p5js.org/bojidar-bg/ful</span><span class="invisible">l/j3T6PwfH1</span></a></p><p><a href="https://mastodon.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mastodon.social/tags/p5js" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>p5js</span></a></p>
n-gons<p>Wow, check all the beautiful stuff posted for <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> - none from me this time, I’m on summer break:)</p>
foldworks<p>Ulugh Beg Observatory Museum, Samarkand, Uzbekistan</p><p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a> <a href="https://mathstodon.xyz/tags/architecture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>architecture</span></a> <a href="https://mathstodon.xyz/tags/history" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>history</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a></p>
Non-Euclidean Dreamer<p>Happy <a href="https://mathstodon.xyz/tags/tilingtuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tilingtuesday</span></a> to all who celebrate!</p><p>here we have a batch of a triangle Tiling in Nilgeometry, all edges are geodesics and the same length, growing throughout the video.</p><p>One edge of each triangle is vertical. we look at the structure horizontally from a fixed distance.</p><p>in Nilgeometry 3 points do not generally define a plane (a totally geodesic subspace) so there is no intrinsic way to think of the Triangles as surfaces.</p>
Adam P<p><a href="https://mastodon.r-flash.eu/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a></p>
Malwen<p><a href="https://toot.wales/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a><br>Created in <a href="https://toot.wales/tags/OneLab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OneLab</span></a></p>
Bojidar Marinov<p><a href="https://mastodon.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a></p>
foldworks<p>Carved stone screen, Agra, India, 19th century, copied from earlier models, Victoria and Albert Museum, London</p><p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a> <a href="https://mathstodon.xyz/tags/architecture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>architecture</span></a></p>
Rasmus<p>(5/n) <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a></p>
Σ(i³) = (Σi)²<p>Same as last week, but with slightly tweaked parameters<br><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a></p>