techhub.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A hub primarily for passionate technologists, but everyone is welcome

Administered by:

Server stats:

4.6K
active users

#flowVisualization

2 posts2 participants0 posts today
Nicole Sharp<p><strong>A Variety of Vortices</strong></p><p>Winds parted around the <a href="https://en.wikipedia.org/wiki/Kuril_Islands" rel="nofollow noopener" target="_blank">Kuril Islands</a> and left behind a string of vortices in this satellite image from April 2025. This pattern of alternating vortices is known as a von Karman vortex street. The varying directions of the vortex streets show that winds across the islands ranged from southeasterly to southerly. Notice also that the size of the island dictates the size of the vortices. Larger islands create larger vortices, and smaller islands have smaller and more frequent vortices. (Image credit: M. Garrison; via <a href="https://earthobservatory.nasa.gov/images/154293/vortex-variety-hour?__readwiseLocation=" rel="nofollow noopener" target="_blank">NASA Earth Observatory</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/satellite-image/" target="_blank">#satelliteImage</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/von-karman-vortex-street/" target="_blank">#vonKarmanVortexStreet</a></p>
Nicole Sharp<p><strong>“Creation”</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/creation1.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/creation2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/creation3.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/creation4.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/creation5.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/creation6.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>Videographer Vadim Sherbakov’s short film “Creation” is full of glittery vistas created under a macro lens. Shifting, particle-seeded flows shimmer in bright colors. Glistening deltas shift and form, and Marangoni flows generate feathers and tree-like dendritic arms. Macro flows never cease to fascinate. (Video and image credit: <a href="https://www.vadimsherbakov.com/" rel="nofollow noopener" target="_blank">V. Sherbakov</a>; via <a href="https://www.thisiscolossal.com/2024/02/vadim-sherbakov-creation/" rel="nofollow noopener" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/marangoni-efffect/" target="_blank">#MarangoniEfffect</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Inside Cuttlefish Suction</strong></p> <p><a class="" href="https://Black%20and%20white%20image%20of%20a%20cuttlefish%20catching%20prey%20with%20its%20tentacles.%20Text%20reads,%20Cuttlefish%20capture%20prey%20using%20suction%20cups%20located%20on%20their%20tentacles." rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/cuttlefish_suction2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/cuttlefish_suction3.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>Cuttlefish, like many cephalopods, catch prey with their tentacles. Suction cups along the tentacle help them hold on. In this video, researchers share preliminary studies of what goes on inside these suction cups as they’re detached. The low pressures inside the suction cup cause water to vaporize, temporarily. As seen for both the cuttlefish and a bio-inspired suction cup, small bubbles form inside the attached cup, coalesce into larger bubbles, and then get destroyed in the catastrophic leak that occurs once part of the suction cup detaches. (Video and image credit: B. Zhang et al.)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/bubble-collapse/" target="_blank">#bubbleCollapse</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/cavitation/" target="_blank">#cavitation</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/cuttlefish/" target="_blank">#cuttlefish</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/suction/" target="_blank">#suction</a></p>
Nicole Sharp<p><strong>Glimpses of Coronal Rain</strong></p><p>Despite its incredible heat, our sun‘s corona is so faint compared to the rest of the star that we can rarely make it out except during a total solar eclipse. But a <a href="https://doi.org/10.1038/s41550-025-02564-0" rel="nofollow noopener" target="_blank">new adaptive optic technique</a> has given us coronal images with unprecedented detail.</p><p>These images come from the 1.6-meter Goode Solar Telescope at Big Bear Solar Observatory, and they required some 2,200 adjustments to the instrument’s mirror every second to counter atmospheric distortions that would otherwise blur the images. With the new technique, the team was able to sharpen their resolution from 1,000 kilometers all the way down to 63 kilometers, revealing heretofore unseen details of plasma from solar prominences dancing in the sun’s magnetic field and cooling plasma falling as coronal rain.</p><p>The team hope to upgrade the 4-meter Daniel K. Inouye Solar Telescope with the technology next, which will enable even finer imagery. (Image credit: <a href="https://nso.edu/press-release/new-adaptive-optics-shows-stunning-details-of-our-stars-atmosphere/" rel="nofollow noopener" target="_blank">Schmidt et al./NJIT/NSO/AURA/NSF</a>; research credit: <a href="https://doi.org/10.1038/s41550-025-02564-0" rel="nofollow noopener" target="_blank">D. Schmidt et al.</a>; via <a href="https://gizmodo.com/telescope-upgrade-reveals-suns-coronal-rain-in-unprecedented-detail-2000607634" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetic-field/" target="_blank">#magneticField</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetohydrodynamics/" target="_blank">#magnetohydrodynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plasma/" target="_blank">#plasma</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/solar-dynamics/" target="_blank">#solarDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/stellar-evolution/" target="_blank">#stellarEvolution</a></p>
Nicole Sharp<p><strong>Bow Shock Instability</strong></p><p>There are few flows more violent than planetary re-entry. Crossing a shock wave is always violent; it forces a sudden jump in density, temperature, and pressure. But at re-entry speeds this shock wave is so strong the density can jump by a factor of 13 or more, and the temperature increase is high enough that it literally rips air molecules apart into plasma. </p><p>Here, researchers show a numerical simulation of flow around a space capsule moving at Mach 28. The transition through the capsule’s bow shock is so violent that within a few milliseconds, all of the flow behind the shock wave is turbulent. Because turbulence is so good at mixing, this carries hot plasma closer to the capsule’s surface, causing the high temperatures visible in reds and yellows in the image. Also shown — in shades of gray — is the vorticity magnitude of flow around the capsule. (Image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.P2685195" rel="nofollow noopener" target="_blank">A. Álvarez and A. Lozano-Duran</a>) </p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/cfd/" target="_blank">#CFD</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/computational-fluid-dynamics/" target="_blank">#computationalFluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/hypersonic/" target="_blank">#hypersonic</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/numerical-simulation/" target="_blank">#numericalSimulation</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/shock-wave/" target="_blank">#shockWave</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Nicole Sharp<p><strong>South Island Sediments</strong></p><p>In April and May late autumn storms ripped through Aotearoa New Zealand. This image shows the central portion of South Island, where coastal waters are unusually bright thanks to suspended sediment. We typically think of storm run-off as water, but these flows can carry lots of sediment as well. Here, the large amount of sediment is likely a combination of increased run-off from rivers and coastal sediment stirred up by faster river flows. (Image credit: W. Liang; via <a href="https://earthobservatory.nasa.gov/images/154257/late-autumn-storm-lashes-new-zealand" rel="nofollow noopener" target="_blank">NASA Earth Observatory</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/satellite-image/" target="_blank">#satelliteImage</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sediment-transport/" target="_blank">#sedimentTransport</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sedimentation/" target="_blank">#sedimentation</a></p>
Nicole Sharp<p><strong>“Now I See – The Collection Vol. 2”</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nowisee2_a.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nowisee2_b.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nowisee2_c.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nowisee2_d.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nowisee2_e.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nowisee2_f.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>In the next video of his current collection, <a href="https://fyfluiddynamics.com/?s=De+Giuli" rel="nofollow noopener" target="_blank">Roman De Giuli</a> takes us flying over liquid landscapes that look like our Earth in miniature. Many of them have the feeling of river deltas or glaciers. Sharp-eyed viewers will notice bubbles and flotsam in some of these streams. If you follow them, you can see how the flows vary — wiggling around islands, speeding up through constrictions and slowing down when the stream widens. It is, as always, a beautiful form of flow visualization. (Video and image credit: <a href="http://terracollage.com" rel="nofollow noopener" target="_blank">R. De Giuli</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/laminar-flow/" target="_blank">#laminarFlow</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/river-delta/" target="_blank">#riverDelta</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Stunning Interstellar Turbulence</strong></p><p>The space between stars, known as the interstellar medium, may be sparse, but it is far from empty. Gas, dust, and plasma in this region forms compressible magnetized turbulence, with some pockets moving supersonically and others moving slower than sound. The flows here influence how stars form, how cosmic rays spread, and where metals and other planetary building blocks wind up. To better understand the physics of this region, <a href="https://doi.org/10.1038/s41550-025-02551-5" rel="nofollow noopener" target="_blank">researchers built</a> a numerical simulation with over 1,000 billion grid points, creating an unprecedentedly detailed picture of this turbulence.</p><p>The images above are two-dimensional slices from the full 3D simulation. The upper image shows the current density while the lower one shows mass density. On the right side of the images, magnetic field lines are superimposed in white. The results are gorgeous. Can you imagine a fly-through video? (Image and research credit: <a href="https://doi.org/10.1038/s41550-025-02551-5" rel="nofollow noopener" target="_blank">J. Beattie et al.</a>; via <a href="https://gizmodo.com/most-detailed-simulation-of-magnetic-turbulence-in-space-is-surprisingly-beautiful-2000606528?__readwiseLocation=" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astrophysics/" target="_blank">#astrophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/compressibility/" target="_blank">#compressibility</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetohydrodynamics/" target="_blank">#magnetohydrodynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/numerical-simulation/" target="_blank">#numericalSimulation</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Nicole Sharp<p><strong>Clapping Hands</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/clap_cup.gif" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/clap_pp.gif" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/clap_palm.gif" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>Although often associated with applause, hand clapping is more universal than that. The distinctive sound can mark rhythms, draw attention, and even test the surrounding acoustics. But how exactly does hand clapping work? A <a href="https://doi.org/10.1103/PhysRevResearch.7.013259" rel="nofollow noopener" target="_blank">recent study shows</a> that the acoustics of hand clapping come from more than just the collision of hands. Especially in a cupped configuration, clapping hands act like a Helmholtz resonator (think blowing across a bottle top), producing a resonant jet that squeezes out between the forefinger and thumb of the impacted hand. Check out the images above to see how that jet appears in various clapping configurations. (Image and research credit: <a href="https://doi.org/10.1103/PhysRevResearch.7.013259" rel="nofollow noopener" target="_blank">Y. Fu et al.</a>; via <a href="https://doi.org/10.1063/pt.bmpa.zhfm" rel="nofollow noopener" target="_blank">Physics Today</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/acoustics/" target="_blank">#acoustics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/applause/" target="_blank">#applause</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/helmholtz-resonance/" target="_blank">#HelmholtzResonance</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Melting in a Spin</strong></p><p>The world’s largest iceberg A23a is spinning in a Taylor column off the Antarctic coast. This poster looks at a miniature version of the problem with a fluorescein-dyed ice slab slowly melting in water. On the left, the model iceberg is melting without rotating. The melt water stays close to the base until it forms a narrow, sinking plume. In the center, the ice rotates, which moves the detachment point outward. The wider plume is turbulent compared to the narrow, non-rotating one. At higher rotation speeds (right), the plume is even wider and more turbulent, causing the fastest melting rate. (Image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.P2676604" rel="nofollow noopener" target="_blank">K. Perry and S. Morris</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gfm/" target="_blank">#2024gfm</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/iceberg/" target="_blank">#iceberg</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/melting/" target="_blank">#melting</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/rotation/" target="_blank">#rotation</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Manu Jumping, a.k.a. How to Make a Big Splash</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/manu_jump1.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/manu_jump2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/manu_jump3.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>The Māori people of Aotearoa New Zealand compete in manu jumping to create the biggest splash. <a href="https://www.youtube.com/shorts/U_UD26Sq4hc" rel="nofollow noopener" target="_blank">Here’s a fun example</a>. In this video, researchers break down the physics of the move and how it creates an enormous splash. There are two main components — the V-shaped tuck and the underwater motion. At impact, jumpers use a relatively tight V-shape; the researchers found that a 45-degree angle works well at high impact speeds. This initiates the jumper’s cavity. Then, as they descend, the jumper unfolds, using their upper body to tear open a larger underwater cavity, which increases the size of the rebounding jet that forms the splash. To really maximize the splash, jumpers can aim to have their cavity pinch-off (or close) as deep underwater as possible. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2690524" rel="nofollow noopener" target="_blank">P. Rohilla et al.</a>) </p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/diving/" target="_blank">#diving</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/manu-jumping/" target="_blank">#manuJumping</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/splashes/" target="_blank">#splashes</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sports/" target="_blank">#sports</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/worthington-jet/" target="_blank">#WorthingtonJet</a></p>
Nicole Sharp<p><strong>Flamingo Fluid Dynamics, Part 2: The Game’s a Foot</strong></p><p>Yesterday we saw how hunting flamingos use their heads and beaks to draw out and trap various prey. Today we take another look at the <a href="https://doi.org/10.1073/pnas.2503495122" rel="nofollow noopener" target="_blank">same study</a>, which shows that flamingos use their footwork, too. If you watch flamingos on a beach, in muddy waters, or in a shallow pool, you’ll see them shifting back and forth as they lift and lower their feet. In humans, we might attribute this to nervous energy, but it turns out it’s another flamingo hunting habit.</p> <p>As a flamingo raises its foot, it draws its toes together; when it stomps down, its foot spreads outward. This morphing shape, researchers discovered, creates a standing vortex just ahead of its feet — right where it lowers its head to sample whatever hapless creatures it has caught in this swirling vortex. And the vortex, as shown below, is strong enough to trap even active swimmers, making the flamingo a hard hunter to escape. (Image credit: top – <a href="https://unsplash.com/photos/a-group-of-flamingos-standing-in-shallow-water-sz6x6Cb23WQ" rel="nofollow noopener" target="_blank">L. Yukai</a>, others – <a href="https://doi.org/10.1073/pnas.2503495122" rel="nofollow noopener" target="_blank">V. Ortega-Jimenez et al.</a>; research credit: <a href="https://doi.org/10.1073/pnas.2503495122" rel="nofollow noopener" target="_blank">V. Ortega-Jimenez et al.</a>; submitted by Soh KY)</p> <p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flamingo/" target="_blank">#flamingo</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/vortices/" target="_blank">#vortices</a></p>
Nicole Sharp<p><strong>Flamingo Fluid Dynamics, Part 1: A Head in the Game</strong></p><p>Flamingos are unequivocally odd-looking birds with their long skinny legs, sinuous necks, and bent L-shaped beaks. They are filter-feeders, but a <a href="https://doi.org/10.1073/pnas.2503495122" rel="nofollow noopener" target="_blank">new study shows</a> that they are far from passive wanderers looking for easy prey in shallow waters. Instead, flamingos are active hunters, using fluid dynamics to draw out and trap the quick-moving invertebrates they feed on. In today’s post, I’ll focus on how flamingos use their heads and beaks; next time, we’ll take a look at what they do with their feet.</p> <p>Feeding flamingos often bob their heads out of the water. This, it turns out, is not indecision, but a strategy. Lifting its flat upper forebeak from near the bottom of a pool creates suction. That suction creates a tornado-like vortex that helps draw food particles and prey from the muddy sediment.</p> <p>When feeding, flamingos will also open and close their mandibles about 12 times a second in a behavior known as chattering. This movement, as seen in the video above, creates a flow that draws particles — and even active swimmers! — toward its beak at about seven centimeters a second. </p> <p>Staying near the surface won’t keep prey safe from flamingos, either. In slow-flowing water, the birds will set the upper surface of their forebeak on the water, tip pointed downstream. This seems counterintuitive, until you see flow visualization around the bird’s head, as above. Von Karman vortices stream off the flamingo’s head, which creates a slow-moving recirculation zone right by the tip of the bird’s beak. Brine shrimp eggs get caught in these zones, delivering themselves right to the flamingo’s mouth.</p><p>Clearly, the flamingo is a pretty sophisticated hunter! It’s actively drawing out and trapping prey with clever fluid dynamics. Tomorrow we’ll take a look at some of its other tricks. (Image credit: top – <a href="https://unsplash.com/photos/pink-flamingo-bvpWQI8Xb0k" rel="nofollow noopener" target="_blank">G. Cessati</a>, others – <a href="https://doi.org/10.1073/pnas.2503495122" rel="nofollow noopener" target="_blank">V. Ortega-Jimenez et al.</a>; research credit: <a href="https://doi.org/10.1073/pnas.2503495122" rel="nofollow noopener" target="_blank">V. Ortega-Jimenez et al.</a>; submitted by Soh KY)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/filter-feeding/" target="_blank">#filterFeeding</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flamingo/" target="_blank">#flamingo</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/suction/" target="_blank">#suction</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/vortices/" target="_blank">#vortices</a></p>
Nicole Sharp<p><strong>“Soap Bubble Bonanza</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/bubbonan1png.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/bubbonan2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/bubbonan3.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>This video offers an artistic look at a soap bubble bursting. The process is captured with high-speed video combined with schlieren photography, a technique that makes visible subtle density variations in the air. The bubbles all pop spontaneously, once enough of their cap drains or evaporates away for a hole to form. That hole retracts quickly; the acceleration of the liquid around the bubble’s spherical shape makes the retracting film break into droplets, seen as falling streaks near the bottom of the bubble. The retraction also affects air inside the bubble, making the air that touched the film curl up on itself, creating turbulence. Then, as the film completes its retraction, it pushes a plume of the once-interior air upward, as if the interior of the bubble is turning itself inside out. (Video and image credit: D. van Gils)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/schlieren-photography/" target="_blank">#schlierenPhotography</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/soap-bubbles/" target="_blank">#soapBubbles</a></p>
Nicole Sharp<p><strong>Bigger Particles Slide Farther</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/bidisp1.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/bidisp2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/bidisp3.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>Mudslides and avalanches typically carry debris of many shapes and sizes. To understand how debris size affects flows like these, researchers use simplified, laboratory-scale experiments like this one. Here, researchers mix a slurry of silicone oil and glass particles of roughly two sizes. The red particles are larger; the blue ones smaller. Sitting in a cup, the mixture tends to separate, with red particles sinking faster to form the bottom layer and smaller blue particles collecting on top. And what happens when such a mixture flows down an incline? The smaller blue particles tend to settle out sooner, leaving the larger red particles in suspension as they flow downstream. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2691002" rel="nofollow noopener" target="_blank">S. Burnett et al.</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/gravity-current/" target="_blank">#gravityCurrent</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/particle-suspension/" target="_blank">#particleSuspension</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/suspension/" target="_blank">#suspension</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscous-flow/" target="_blank">#viscousFlow</a></p>
Nicole Sharp<p><strong>“Now I See – The Collection Vol. 1”</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/niscol1_6.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/niscol1_5.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/niscol1_4.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/niscol1_3.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/niscol1_2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/niscol1_1.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>On the heels of his behind-the-scenes introduction, here’s the first volume of artist Roman De Giuli’s “Now I See”. In it, we appear to soar above vast colorful landscapes. Rivers flow past islands. Glaciers creep along valleys. Canyons cut through deserts. It’s like a bird’s eye view of our planet’s terrestrial wonders. (Video and image credit: <a href="https://www.terracollage.com/" rel="nofollow noopener" target="_blank">R. De Giuli</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Fractal Fingers</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sti1.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sti2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sti3.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>As bizarre as the branching fractal fingers of the Saffman-Taylor instability look, they’re quite a common phenomenon. In his video, Steve Mould demonstrates how to make them by sandwiching a viscous liquid like school glue between two acrylic sheets and then pulling them apart. The more formal lab-version of this is the Hele-Shaw cell, which he also demonstrates. But you may have come across the effect when pealing up a screen protector or in dealing with a cracked phone screen. In all of these cases, a less viscous fluid — specifically air — is forcing its way into a more viscous fluid, something that it cannot manage without the fluid interface fracturing. (Video and image credit: S. Mould)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fractals/" target="_blank">#fractals</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/hele-shaw-cell/" target="_blank">#HeleShawCell</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/saffman-taylor-instability/" target="_blank">#SaffmanTaylorInstability</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscous-fingering/" target="_blank">#viscousFingering</a></p>
Nicole Sharp<p><strong>Mapping the Mozambique Channel</strong></p><p>The Mozambique Channel boasts some of the world’s most turbulent waters, driven by eddies hundreds of kilometers wide. Eddies of this size — known as <a href="https://en.wikipedia.org/wiki/Eddy_(fluid_dynamics)#Mesoscale_ocean_eddies" rel="nofollow noopener" target="_blank">mesoscale</a> — determine regional flows that influence local biodiversity, sediment mixing, and how plastic pollution moves. To better understand the region, <a href="https://doi.org/10.1029/2024JC021913" rel="nofollow noopener" target="_blank">scientists measured a mesoscale dipole</a> from a research vessel.</p> Illustration of flows in the Mozambique Channel. The anticyclonic ring in dark blue rotates counterclockwise and consists of largely uniform water (labeled Ring: R1). To the south, in green, a cyclonic eddy rotates in a clockwise sense (labeled Cyclone: C1). This area is chlorophyll-rich and has varying salinity levels. Between the two is a filament of chlorophyll-rich water being drawn from the near-shore region (labeled Filament: F1). <p>The dipole consisted of a large anticyclonic ring (shown in dark blue) that rotated counterclockwise and a smaller cyclonic eddy (shown in green) that rotated clockwise. Between these eddies lay a central jet moving up to 130 centimeters per second that drew material out from the shoreline. In the anticyclonic ring, researchers found largely uniform waters with little chlorophyll. The cyclonic eddy, in contrast, was high in chlorophyll and had large variations in salinity. Those smaller-scale variations, they found, helped to drive vertical motions of up to 40 meters per day. </p><p><em>In situ</em> measurements like these help scientists understand how energy flows through different scales in the ocean and how that energy helps transport nutrients, sediment, and pollution regionally. Such measurements also help us to refine ocean models that enable us to predict this transport and how regions will change as climate patterns shift. (Image credit: ship – A. Lamielle/Wikimedia Commons, eddies – <a href="https://doi.org/10.1029/2024JC021913" rel="nofollow noopener" target="_blank">P. Penven et al.</a>; research credit: <a href="https://doi.org/10.1029/2024JC021913" rel="nofollow noopener" target="_blank">P. Penven et al.</a>; via <a href="https://eos.org/research-spotlights/tracking-some-of-the-worlds-fiercest-ocean-currents?__readwiseLocation=" rel="nofollow noopener" target="_blank">Eos</a>)</p><p></p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/dipole/" target="_blank">#dipole</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mesoscale/" target="_blank">#mesoscale</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/oceanography/" target="_blank">#oceanography</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Nicole Sharp<p><strong>Kirigami in the Flow</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/kiri1.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/kiri2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/kiri3.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>Kirigami is a paper art that combines folding and cutting to create elaborate shapes. Here, researchers use cuts in thin sheets of plastic and explore how the sheets transform in a flow. Depending on the configuration of cuts, the sheets can stretch dramatically in the flow, creating complex, dynamic, and beautiful wakes. I feel like there must be some applications out there that would benefit from kirigami-induced mixing. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2676104" rel="nofollow noopener" target="_blank">A. Carleton and Y. Modarres-Sadeghi</a>)</p><p></p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/kirigami/" target="_blank">#kirigami</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mathematics/" target="_blank">#mathematics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Creating Liquid Landscapes</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro1.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro3.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro4.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro5.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro6.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>Artist <a href="https://www.terracollage.com/" rel="nofollow noopener" target="_blank">Roman De Giuli</a> excels at creating what appear to be vast landscapes carved by moving water. In reality, these pieces are small-scale flows, created on paper. Now, De Giuli takes us behind the scenes to see how he creates these masterpieces — layering, washing, burning, and repeating to build up the paperscape that eventually hosts the flows we see recorded. The work is meticulous and slow, and the results are incredible. De Giuli’s videos never fail to transport me to a calmer, more pristine version of our world. I can’t wait to see the new series! (Video and image credit: <a href="https://www.terracollage.com/" rel="nofollow noopener" target="_blank">R. De Giuli</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>