techhub.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A hub primarily for passionate technologists, but everyone is welcome

Administered by:

Server stats:

4.6K
active users

#maths

87 posts34 participants1 post today
Rémi Eismann<p>One day, one decomposition<br>A002081: Numbers congruent to {2, 4, 8, 16} (mod 20)</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/A002081.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/A002081.</span><span class="invisible">html</span></a><br>3D graph Gen, threejs animation ➡️ <a href="https://decompwlj.com/3DgraphGen/A002081.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/A0020</span><span class="invisible">81.html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/A002081.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">A002081.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
lagomoof<p>The number of iterations of x → x-√x to get to 0 is approximately 2√x - ln(x)/4 - 1. For sufficiently large x, this approximation differs from known true values by approximately 0.069555. The meaning of this constant is a mystery (to me).</p><p><a href="https://mastodon.social/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a></p>
Bibliolater 📚 📜 🖋<p>🖥️ **Detailed Logs Show ChatGPT Leading a Vulnerable Man Directly Into Severe Delusions**</p><p>_"What is happening dude," he asked. ChatGPT didn't mince words: "What’s happening, Allan? You’re changing reality — from your phone."_</p><p>🔗 <a href="https://futurism.com/chatgpt-chabot-severe-delusions" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">futurism.com/chatgpt-chabot-se</span><span class="invisible">vere-delusions</span></a>. </p><p><a href="https://qoto.org/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://qoto.org/tags/ArtificialIntelligence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtificialIntelligence</span></a> <a href="https://qoto.org/tags/Technology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Technology</span></a> <a href="https://qoto.org/tags/Tech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Tech</span></a> <a href="https://qoto.org/tags/ChatGPT" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ChatGPT</span></a> <a href="https://qoto.org/tags/Maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Maths</span></a> <a href="https://qoto.org/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a> <a href="https://qoto.org/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a></p>
Bibliolater 📚 📜 🖋<p>📖 **Calculus Made Easy by Silvanus P. Thompson**</p><p>"_Read or download for free_"</p><p>🔗 <a href="https://www.gutenberg.org/ebooks/33283" rel="nofollow noopener" target="_blank"><span class="invisible">https://www.</span><span class="">gutenberg.org/ebooks/33283</span><span class="invisible"></span></a>. </p><p><a href="https://qoto.org/tags/ProjectGutenberg" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ProjectGutenberg</span></a> <a href="https://qoto.org/tags/Maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Maths</span></a> <a href="https://qoto.org/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a> <a href="https://qoto.org/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a> <a href="https://qoto.org/tags/Read" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Read</span></a> <a href="https://qoto.org/tags/Download" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Download</span></a> <a href="https://qoto.org/tags/Nonfiction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Nonfiction</span></a> <a href="https://qoto.org/tags/Book" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Book</span></a> <a href="https://qoto.org/tags/EBook" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EBook</span></a> <a href="https://qoto.org/tags/Bookstodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Bookstodon</span></a> <span class="h-card"><a href="https://a.gup.pe/u/bookstodon" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>bookstodon</span></a></span></p>
Paysages Mathématiques<p>"One of the essential things a mathematician does is recognize the internal coherence and generative character belonging to certain concepts. It happens that very simple concepts can suggest all sorts of ideas or models. Investigating these, one truly has the impression of exploring a world step by step – and of connecting up the steps so well, so coherently, that one knows it has been entirely explored [...] – Alain Connes (1947-)<br><a href="https://mathstodon.xyz/tags/quote" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quote</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a></p>
Paysages Mathématiques<p>"Un des traits essentiels du travail du mathématicien est de reconnaître la cohérence interne et le caractère génératif propre à certains concepts. Des concepts très simples arrivent à engendrer toutes sortes d'autres idées ou d'autres modèles. De proche en proche, on a vraiment l'impression d'explorer un monde... et d'atteindre une cohérence qui montre qu'on en a exploré entièrement une région [...]" – Alain Connes (1947-)<br><a href="https://mathstodon.xyz/tags/citation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>citation</span></a> <a href="https://mathstodon.xyz/tags/math%C3%A9matiques" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathématiques</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a></p>
Paysages Mathématiques<p>Theorem of the Day (August 10, 2025) : Gödel’s Second Incompleteness Theorem<br>Source : Theorem of the Day / Robin Whitty<br>pdf : <a href="https://www.theoremoftheday.org/LogicAndComputerScience/Godel2/TotDGodel2.pdf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">theoremoftheday.org/LogicAndCo</span><span class="invisible">mputerScience/Godel2/TotDGodel2.pdf</span></a><br>notes : <a href="https://www.theoremoftheday.org/Resources/TheoremNotes.htm#75" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">theoremoftheday.org/Resources/</span><span class="invisible">TheoremNotes.htm#75</span></a> </p><p><a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@Theoremoftheday" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>Theoremoftheday</span></a></span></p>
Rémi Eismann<p>Now this animation is available for the 1000 sequences decomposed on my website.<br>Accessible from the 3Dgraph, 2Dgraph500terms and 2dgraphs pages ➡️ <a href="https://decompwlj.com" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">decompwlj.com</span><span class="invisible"></span></a><br>A little more work on axis sizing and controls.</p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>4: The palindromes in base 10 (A002113) ➡️ <a href="https://decompwlj.com/3DgraphGen/Palindromes.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Palin</span><span class="invisible">dromes.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>3: The triangular numbers (A000217) ➡️ <a href="https://decompwlj.com/3DgraphGen/Triangular_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Trian</span><span class="invisible">gular_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>2: The prime numbers (A000040) ➡️ <a href="https://decompwlj.com/3DgraphGen/Prime_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Prime</span><span class="invisible">_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>Generation of four sequences decomposed into weight × level + jump (log(weight), log(level), log(jump)) - three.js animation:<br>🧵⬇️</p><p>1: The natural numbers (A000027) ➡️ <a href="https://decompwlj.com/3DgraphGen/Natural_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Natur</span><span class="invisible">al_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>One day, one decomposition<br>A002048: Segmented numbers, or prime numbers of measurement</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/Segmented_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/Segmente</span><span class="invisible">d_numbers.html</span></a><br>3D graph Gen, threejs animation ➡️ <a href="https://decompwlj.com/3DgraphGen/Segmented_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Segme</span><span class="invisible">nted_numbers.html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/Segmented_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">Segmented_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/Segmented" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Segmented</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/measurement" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>measurement</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Tariq<p>I honestly think the book is wrong.</p><p>Book asks us to prove this is a tautology. </p><p>(A ⇒(A⇒B)) ⇒ (A⇒B)</p><p>Am I deeply mistaken?</p><p>In my mind it is only true if A is assumed to be true which we aren't doing here.</p><p>------</p><p>Precious exercise was ok: (A ⇒ ((A⇒B)⇒B) makes sense.</p><p><a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>logic</span></a></p>
Paysages Mathématiques<p>"Mathematics, as we know it, appears to us as one of the necessary forms of our thought." – André Weil (1906-1998)<br><a href="https://mathstodon.xyz/tags/quote" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quote</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a></p>
Paysages Mathématiques<p>"La mathématique, telle que nous la connaissons, nous paraît l'une des formes nécessaires de notre pensée." – André Weil (1906-1998)<br><a href="https://mathstodon.xyz/tags/citation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>citation</span></a> <a href="https://mathstodon.xyz/tags/math%C3%A9matiques" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathématiques</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a></p>
Paysages Mathématiques<p>AI Took on the Math Olympiad—But Mathematicians Aren’t Impressed<br>Source : Scientific American / Emily Riehl</p><p><a href="https://www.scientificamerican.com/article/mathematicians-question-ai-performance-at-international-math-olympiad/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">scientificamerican.com/article</span><span class="invisible">/mathematicians-question-ai-performance-at-international-math-olympiad/</span></a><br><a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <span class="h-card" translate="no"><a href="https://flipboard.com/@SciAm" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>SciAm</span></a></span></p>
Paysages Mathématiques<p>Thomaths 30 : Nombres Quantiques<br>Source : Youtube / Thomaths</p><p><a href="https://www.youtube.com/watch?v=4vRbFduv6us" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">youtube.com/watch?v=4vRbFduv6us</span><span class="invisible"></span></a><br><a href="https://mathstodon.xyz/tags/math%C3%A9matiques" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathématiques</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/Youtube" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Youtube</span></a></p>
Paysages Mathématiques<p>Students Find Hidden Fibonacci Sequence in Classic Probability Puzzle<br>Source : Scientific American / Emma R. Hasson </p><p><a href="https://www.scientificamerican.com/article/students-find-hidden-fibonacci-sequence-in-classic-probability-puzzle/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">scientificamerican.com/article</span><span class="invisible">/students-find-hidden-fibonacci-sequence-in-classic-probability-puzzle/</span></a><br><a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <span class="h-card" translate="no"><a href="https://flipboard.com/@SciAm" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>SciAm</span></a></span></p>
Juan F. Ramírez<p>Fun with numbers from <a href="https://mastodon.social/tags/zxcomputing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>zxcomputing</span></a> magazine.</p><p>Download:<br><a href="https://spectrumcomputing.co.uk/entry/25837/ZX-Spectrum/Mathmania-Primefact" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">spectrumcomputing.co.uk/entry/</span><span class="invisible">25837/ZX-Spectrum/Mathmania-Primefact</span></a></p><p><a href="https://mastodon.social/tags/zxspectrum" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>zxspectrum</span></a> <a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/retrogaming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>retrogaming</span></a></p>