techhub.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A hub primarily for passionate technologists, but everyone is welcome

Administered by:

Server stats:

5.4K
active users

#LlamaIndex

0 posts0 participants0 posts today

Ich will mal ein paar #GenAI #RAG Tests machen und habe überlegt, mit welchem mir bekannten Korpus ich das machen könnte. Nachdem ab Dienstag erstmal dystopische Zeiten bevorstehen, habe ich mich für "Jonas, Der letzte Detektiv" entschieden (de.wikipedia.org/wiki/Der_letz) entschieden, das habe ich in meiner Jugend immer Donnerstag Abend in Bayern 2 gehört 😎

Prozess: Download > Transkript mit #Whisper -> Vorbereitung mit #Llamaindex

Reverse engineering LlamaIndex has been a fascinating dive into understanding how its Workflow processes are structured to handle dynamic data retrieval and integration seamlessly. At its core, a LlamaIndex Workflow orchestrates the interaction between indexes, queries, and retrieval logic, ensuring efficient and context-aware results. By analyzing its modular design, I found that each task—whether building an index or querying it—is highly decoupled, enabling scalability and customization. The workflow’s use of adaptive heuristics and stateful operations allows it to fine-tune results in real-time while handling diverse data sources. This design not only ensures flexibility but also showcases how workflows in LlamaIndex intelligently manage complexity in knowledge retrieval tasks. Understanding these processes provides valuable insights for building robust, modular AI systems. #LlamaIndex #ReverseEngineering #AIWorkflows #KnowledgeRetrieval

🚀 Comprehensive Guide to Building with #Groq API

🔧 Key Components:
• Complete examples for building chatbots, RAG systems & #SQL applications using #LangChain, #LlamaIndex & #DuckDB
• Integration tutorials with popular tools like #Streamlit, #Portkey, #JigsawStack & #E2B
• Ready-to-use #Replit examples for quick experimentation with different #LLM implementations
• Step-by-step guides for setting up #CodeGPT in VSCode with #Groq

💡 Featured Implementations:
• Text-to-SQL applications with JSON mode & function calling
• Presidential speeches RAG with #Pinecone
• Stock market analysis using #Llama3 function calling
• Newsletter summarizer using #Composio
#CrewAI machine learning assistant

🛠️ Perfect for developers looking to leverage Groq's lightning-fast inference speeds in production applications.

📖 Full documentation & examples available at: github.com/groq/groq-api-cookb

Contribute to groq/groq-api-cookbook development by creating an account on GitHub.
GitHubGitHub - groq/groq-api-cookbookContribute to groq/groq-api-cookbook development by creating an account on GitHub.

🧠 #LlamaCloud è un ambiente cloud che permette di rendere usabile #LlamaIndex attraverso un'interfaccia web. In poche parole permette di creare sistemi #RAG in modo più semplice. Attualmente è in versione alpha, ma lascia intuire applicazioni potenti.
⚙️ L'immagine è un esempio di una pipeline RAG multimodale basata su dati complessi non strutturati, che consente di analizzare, indicizzare, interrogare elementi visivi in slide deck di marketing, contratti legali, report finanziari, ecc..

🧠 #LlamaParse è un nuovo progetto in grado di elaborare informazioni sui documenti, comprendendo anche elementi visuali e tabelle.
💡 Supporta documenti in qualunque formato: PDF, docx, pptx, xlrx, HTML.
👉 Il sistema si integra direttamente con #LlamaIndex.
⚙️ Lo schema custom ha ancora qualche problema, ma è una versione beta che promette molto bene.

🔗 Il progetto: github.com/run-llama/llama_par

🧠 #Opik è un nuovo sistema open source per il tracciamento e la valutazione delle applicazioni basate sui #LLM.
👉 Permette di tenere traccia di tutte le interazioni, e si interfaccia nativamente con #OpenAI, #LangChain, #LlamaIndex, #Ollama, e molti altri sistemi.
👉 Consente di individuare facilmente se il modello introduce informazioni fuori contesto, e di confrontare versioni diverse dell'applicazione, fino alla produzione.
🔗 Il progetto: github.com/comet-ml/opik

Writing #frontend code using a component framework feels a little like writing a fanfic. Actually, I get the same feeling when writing #LLM pipelines using #LlamaIndex. This is someone else's fantasy world that I'm playing in. I have to enjoy reading their docs. I have to feel inspired.

I'll be honest, I really like LlamaIndex's team, and I like some of their docs, but it's not exactly the nightstand reading that the #Railsguides are. They are juicy and fun!

This post inspired by #BulmaCSS.