I finally got around to writing up a chart makeover
blog post based on my (deliberately) bad chart created for the #30DayChartChallenge!

I finally got around to writing up a chart makeover
blog post based on my (deliberately) bad chart created for the #30DayChartChallenge!
You can now see all my recent charts and their stories in 1 place: https://didoesdigital.com/30-day-chart-challenge-2025/
#30DayChartChallenge - Day 28: Inclusion What's the opposite of inclusion? Exclusion and this chart compares the rate of adults at risk of poverty or social exclusion in the EU based on their country of birth. #rstats #dataviz
30 Day Chart Challenge Blog Post
Featuring:
What I've learned
My favourite charts
Advice if you're thinking about participating!
Link: https://nrennie.rbind.io/blog/30-day-chart-challenge-2025/
#30DayChartChallenge - Day 26: Noise Almost there! This one is all about people complaining about noise from loud music and parties in New York City in 2020 and 2024. The colour scheme is inspired by the yellow of the city's taxis. #rstats #dataviz
One mangrove tree can remove 0.3 tonnes of carbon from the atmosphere over its growth life. Mangrove forests can hold nearly 400 tonnes of CO2 per hectare in their living biomass and in the top metre of soil.
They're also cost effective to grow and maintain, so long as our communities continue to take care of them.
¡Reto #30DayChartChallenge 2025 COMPLETADO! 30 días, 30 visualizaciones con #RStats y #ggplot2.
Ha sido un viaje increíble explorando comparaciones, distribuciones, relaciones (¡animales!), series temporales (sociales, económicas) e incertidumbre (riesgo, exoplanetas, mapas...).
Puedes ver la galería completa (y todo el código) en mi repositorio: https://github.com/michal0091/dataviz/tree/main/R/30DayChartChallenge2025
¡Gracias por seguir el reto! #dataviz #DataVisualization #DataStorytelling #ChallengeComplete #Rprogramming
It's the last day of the #30DayChartChallenge, and the final prompt is "National Geographic Theme" so here's my first and only map created for the challenge!
Made with #RStats
Colours inspired by National Geographic logo
{ggpattern} to use striped areas for missing data
#30DayChartChallenge ¡Día 30 y FIN! Último tema: National Geographic
. Mi mapa: Riesgo de Desertificación en España (Península, Baleares y Canarias), estilo NatGeo. #UncertaintiesWeek #Mapping
Visualizando la vulnerabilidad territorial (riesgo/incertidumbre) con datos del PAND (MITECO 2008). Colores de amarillo pálido (Bajo) a rojo oscuro (Muy Alto).
Intenté capturar la esencia NatGeo: paleta, fuentes (Lato/Gudea), escala, norte y la famosa ¡banda amarilla! (añadida con grid). Canarias colocadas con {mapSpain}.
¡Un desafío cartográfico para terminar el mes! ¡Encantado de haber completado los 30 días!
#rstats #ggplot2 #sf #ggspatial #mapSpain #grid | Data: MITECO PAND | Theme: Custom NatGeo
Código Final del Reto: https://t.ly/Ol06w
Día 8 | Distribuciones – Histograma | #30DayChartChallenge. | Visualización hecha usando R con los paquetes #ggplot2, #dplyr, #patchwork, #sf, #ggtext, #showtext, #raster, #exactextractr, #ggscale y #scales.
#30DayChartChallenge Día 29: Extraterrestrial! ¡Planetas con su incertidumbre a cuestas! #UncertaintiesWeek #Astronomy
Volvemos al gráfico Radio vs Insolación (log-log, color=Temp) de exoplanetas (NASA Archive). Pero hoy añadimos una capa visual para la incertidumbre: el "halo" gris ️ detrás de cada punto.
El tamaño del halo es proporcional al log(error) reportado para la Insolación. ¡Halos grandes = más incertidumbre en la energía que recibe ese planeta!
Es un recordatorio de que los datos astronómicos tienen errores y no todos los puntos son igual de "seguros". Interesante ver qué planetas en la zona habitable (verde) tienen más incertidumbre. (+ Venus/Tierra/Marte ).
#rstats #ggplot2 #ggrepel | Data: NASA | Theme: #theme_week5_uncertainty
Código/Viz: https://t.ly/ygNLW
It's almost the end of the #30DayChartChallenge and for the prompt of "Extraterrestrial", I decided to make a chart designed in the style of an extraterrestrial who has never heard of good data visualisation principles!
How many chart crimes can you spot?
The Parkes Observatory is national heritage listed in Australia. Apparently "Australia was an international leader in the ground-breaking field of radio astronomy research in the post-World War II period".
It may have even helped CSIRO invent wifi!
People aged 65-74 recorded Digital Inclusion Index Scores 12.1 points below the national average, while those
over 75 recorded scores 24.6 points below. For people over the age of 75, the Digital Ability component was a dramatic 41.6 points below the national average.
Public libraries around Australia run "digital inclusion" sessions. In the 2022–2023 financial year, there were
- 16,657 in South Australia
- 15,659 in Victoria
- 14,350 in Queensland
- 10,574 in Western Australia
- 7,581 in New South Wales
Find a public library to join. Even if it's not nearby, they may have online resources. And definitely tell the older folks in your life about them: https://www.nla.gov.au/apps/libraries/?action=MapSearch
Day 28 | Uncertainties – Inclusion | #30DayChartChallenge. Visualization made with R using #ggplot2, #dplyr, #ggtext and #showtext | Source: Google Trends.
A very loose interpretation of the "Inclusion" prompt for Day 28 of the #30DayChartChallenge, by "including" two charts in one!
Data prep with #RStats
Waffle plot made with D3
Icons from Font Awesome
#30DayChartChallenge Día 28: Inclusion! O... la falta de ella a nivel territorial en España
. Hoy comparamos la evolución de la tasa de paro trimestral (EPA/INE, 2005-2024) en varias CC.AA. vs la media nacional (rojo). #UncertaintiesWeek #SocialData
¡El gráfico habla por sí solo! Mirad la enorme brecha que se abre, sobre todo tras 2008, entre regiones como Andalucía y otras como País Vasco o Navarra. Madrid, más cerca de la media. Refleja mercados laborales muy diferentes y retos de cohesión enormes. La "inclusión" territorial en el empleo sigue siendo una asignatura pendiente.
Una visualización para reflexionar sobre las desigualdades estructurales.
#rstats #ggplot2 #data_table | Data: INE (EPA) | Theme: #theme_week5_uncertainty
Código/Viz: https://t.ly/UwPQG
#30DayChartChallenge - Day 23: log scale Data on wildfire incidents attended by the fire and rescue services in England between 2009-2020. #rstats #dataviz
2025 #30DayChartChallenge | day 27 | uncertainties | noise
.: https://stevenponce.netlify.app/data_visualizations/30DayChartChallenge/2025/30dcc_2025_27.html
.
#rstats | #r4ds | #dataviz | #ggplot2